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Abstract—Community subgraphs are characterized by dense
connections or interactions among its nodes. Community detec-
tion and evaluation is an important task in graph mining. A
variety of measures have been proposed to evaluate the quality of
such communities. In this paper, we evaluate communities based
on the k-core concept, as means of evaluating their collaborative
nature - a property not captured by the single node metrics or
by the established community evaluation metrics. Based on the
k-core, which essentially measures the robustness of a community
under degeneracy, we extend it to weighted graphs, devising a
novel concept of k-cores on weighted graphs. We applied the k-
core approach on large real world graphs – such as DBLP and
report interesting results.

Index Terms—Community evaluation, k-core, graph mining,
co-authorship graphs

I. INTRODUCTION

Large and evolving graphs constitute an important element
in current large scale information systems. Common cases
of such graphs are the Web graph, social networks, citation
graphs, CDRs (call data records) where nodes (featured with
attributes - in some cases with a large cardinality) are con-
nected to each other with directed edges representing a relation
such as endorsement/recommendation/friendship. In all cases
and to a great extend due to the economic aspects of these
networks the ranking of individual nodes is a cornerstone
concept.

Graphs of real data with community structure have a broad
distribution on the degree a node may display. As it is pointed
out in [2], nodes of low degree coexist with nodes of high
degree making the graph in-homogeneous both globally and
locally which usually indicates order and structural behavior
i.e. communities.

Community sub-graphs are characterized by dense connec-
tions or interactions among its nodes. Community detection
and evaluation is an important task in graph mining. A variety
of measures have been proposed to evaluate the quality of such
communities. In this paper, we evaluate communities based on
the k-core concept, as means of evaluating their collaborative
nature - a property not captured by the single node metrics or
by the established community evaluation metrics.

Our contributions lie in the following:
• A novel metric for evaluating the cohesiveness of com-

munities based on the k-core structure.

• An innovative extension of the k-core concept assigning
weights on the edges. The weights represent the degree
of cooperation among the two connected vertices.

• We develop an extended experimental evaluation in the
case of the DBLP co-authorship graph that results in very
interesting findings.

In the rest of this paper we:
• Provide motivation for the identification of the most

cohesive part of a community graph and give special
emphasis to the DBLP coauthor ship graph.

• Introduce step by step the fractional core method by
firstly presenting the k-core algorithm and its complexity
on un-weighted graphs and then expanding the graph
model by adding weights and altering the basic algorithm
accordingly.

• Present and describe the DBLP dataset and the applica-
tion of the k-core algorithm on its coauthor ship graph.
Following we filter the DBLP dataset, to exclude abnor-
malities on the general behavior of the graph, and apply
again the k-cores. Lastly the proposed fractional core
method is utilized and a comparison of the 3 different
versions of results is made.

• Finally we present our conclusion on this novel appli-
cation of k-cores and its variation for the evaluation of
communities and its members.

II. RELATED WORK

A thorough review on community detection in graphs is of-
fered by Fortunato in [6]. In that work techniques, methods and
data sets are presented for detecting communities in sociology,
biology and computer science, disciplines where systems are
often represented as graphs. Most existing relevant methods
are presented, with a special focus on statistical physics,
including discussion of crucial issues like the significance of
clustering and how methods should be tested and compared
against each other.

The k-cores are fundamental structures in graph theory and
their study dates back to the 60’s [4], [14], [8]. The existence
of k-cores of large size in sufficiently dense graphs has been
theoretically studied by [12] for random graphs generated by
the Erdős-Rényi model [5]. As shown in [12], a k-core whose
size is proportionate to the size of G (i.e. a “giant” k-core)



appears in a random graph with n vertices and m edges when
m reaches a threshold ck ·n, for some constant ck that depends
exclusively on k.

Studying the general behavior and properties of real
graphs,both weighted and unweighted, is the subject of [9]
where a pattern on the behavior of connected components over
time is observed and a upon that is build a generative model.

In recent literature various metrics are proposed relevant
to the graph structure of a social network. Such are “Be-
tweenness” [15], “Centrality” [11], “Clustering coefficient (a
measure of the likelihood that two associates of a node are
associates themselves. A higher clustering coefficient indicates
a greater “cliquishness”, i.e. cohesion degree or density. Of
special interest here is the eigenvector centrality- a measure
of the importance of a node in a network. It assigns relative
scores to all nodes in the network based on the principle that
connections to nodes having a high score contribute more to
the score of the node in question. Other measures include “path
length” (i.e. distances between pairs of nodes in the network),
“prestige/authority”, a measure in directed graphs to describe
a node’s centrality and “radiality”, a notion representing an
individual’s network to reach out into the network and thus
is influential. Other interesting measures include “Structural
cohesion” - the minimum number of members who, if removed
from a group, would disconnect the group [10]. In [7] an idea
similar to the k-cores is used to filter out less significant nodes,
by pruning them out. The main difference to our approach is
that it removes only a sufficient portion of the nodes. The cores
are then fed to a generalized HITS algorithm used to expand
the communities within them. In [3] greedy approximation
algorithms are proposed for finding the dense components of
a graph. Both undirected and directed graphs are examined. In
the case of directed graphs the vertices are divided in hubs (S)
and authorities (T ), then based on a value of |S|/|T | a greedy
algorithm removes the vertex of minimum degree from either
S or T until both sets are empty. Also in [13] the subject
of finding dense subgraphs based on query nodes is studied
where the subject is to find a community that contains certain
given nodes.

III. THE FRACTIONAL CORE METHOD

Motivation for finding the most cohesive part of community
graph – special emphasis to DBLP co-authorship graph

A. k-core as cohesion measure for cohesive co-authorship
communities

Let G be a simple undirected graph. We denote by ∆(G)
the minimum degree of a vertex in G. The degeneracy of G
is defined as follows.

δ∗(G) = max{∆(H) | H ⊆ G}

Also we define the k-core of a graph as the maximum size
sub graph H of G where ∆(H) ≥ k , where k is a positive
integer. It can be proved that such a sub graph is unique.
DEFINITION 1 (Vertex core number) The core number of a
vertex v of G is the maximum k for which v belongs in the

k-core of G.

DEFINITION 2 (Subgraph core number) The core number of
a subset S of the vertices of G is the maximum k for which
all vertices of S belong in the k-core of G.

The algorithm for computing the k-cores follows:

Procedure Trimkk(D)
Input: An undirected graph D and positive integer k
Output: k-core(D)

1. let F D.
2. while there is a node x in F such that degF (x) < k

delete node x from F .
3. return F .

The k-core algorithm is of low complexity thus computa-
tions are feasible even in large scale digraphs.

We consider the DBLP bipartite graph GDBLP = (A,P,E)
where A is the set of authors, P is the set of papers, and E is a
set of edges. Each edge {x, y} (where and y P ) expresses the
fact that x is one of the authors of paper y. We also assume
that all the papers are written by at least two authors, i.e.,
vertices in P have degree at least 2.

Our first wave of experiments considers the graph GDBLP =
(A,P,E) and build the co-authorship graph

HDBLP = (A, {{x, x′} | ∃y ∈ P : {x, y}, {x′, y} ∈ E),

i.e., two authors are made adjacent if they appear as co-authors
in some paper.

We consider δ∗(HDBLP), the core number of each vertex/set
of vertices in HDBLP, and the core of δ∗(HDBLP) in order to
evaluate the collaboration behaviors in the DBLP graph.

However, this is not an entirely satisfactory evaluation as
papers of many co-authors have equal weight in this measuring
as papers with fewer. For this reasons we introduce below a
more refined way to define cores starting from bipartite graphs
(such as the DBLP graph).

B. Fractional k-core for weighted graphs

Let (A,P,E) be a bipartite graph where all vertices in P
have minimum degree 2. If , we define the neighborhood N(x)
of x as the set of y ∈ P for which {x, y} ∈ E. Symmetrically,
we define the neighborhood N(y) of a paper y ∈ P . Also,
given an author x we denote by E(x), the set of all edges
with x as an endpoint.
DEFINITION 3 (Co-authorship edge weight) We define the
weighted co-authorship graph by taking HDBLP, as defined
before, as setting up a rational weighing function w : E → Q
on the edges of HDBLP as follows. For every edge e = {x, x′}
we set

w(e) =
∑

y∈N(x)∩N(x′)

1

N(y)



Notice that,
∑

e∈HDBLP
w(e) = |V (P )|, i.e. the sum of all

the weights on the edges is the size of the graph in terms of
vertices.

Let (G,w) be a graph together a weight function w assign-
ing rational numbers on its edges.

DEFINITION 4 (Vertex fractional degree) We define the
fractional-degree of x in (G,w) as

degG,w(x) =
∑

e∈E(x)

w(e)

If (H,w′) is a sub graph of (G,w) where w′ is
the restriction of w to the edges of H , we define
∆(H,w′) = min{degH,w(x) | x ∈ V (H)}.

Definition 5. Graph fractional-degeneracy: Consider now the
graph HDBLP together with its weight function w. We define
its fractional-degeneracy as follows:

δ∗(G,w)=max{∆(H,w′) |(H,w′) is a subgraph of (G,w)}.

Let k ∈ Q. Then the k-core of (G,w) is the maximal sub
graph (H,w′) of (G,w) where ∆(H,w) ≥ k.

The core number of a subset S of the vertices of an edge-
weighted graph (G,w) is the maximum rational number k for
which all vertices of S belong in the k-core of G. The core
number of a vertex x is defined as before, by taking S = {x}.

Fractional cores are essentially defined for hyper-graphs
where hyper-edges express the groups of distinct elements of a
set (in our case, papers written by authors). For simplicity, we
study such hyper-graphs using their incident (bipartite) graphs.
This directly produces weighted graphs where fractional cores
are detected. Essentially, our work is about fractional cores on
weighted graphs where the weights emerge by hyper-graphs
(and their incident bipartite graphs).

IV. EXPERIMENTAL EVALUATION ON DBLP
In this section we present the evaluation of the above defined

framework on the DBLP coauthor ship graph HDBLP. We
compute the k-core and fractional k-core on different versions
of HDBLP and thus compute the relevant sub graphs finding
thus in each case the most dense communities in terms of co
authorship collaboration.

A. Data set description and preprocessing

The DBLP dataset is freely available in XML format at
http://dblp.uni-trier.de/xml/. From this dataset
we extract the un-weighted and weighted undirected graph
by considering a coauthor ship of a paper from two or
more authors as an edge that connects each pair of the co-
authors from the paper. In the current snapshot there were
approximately 825K authors.

In Figure 1 the reader can see the distribution of the number
of authors per paper in the DBLP graph. It is clear the vast
majority of the papers are authored by few authors. There are
some extremities where one specific paper has 114 coauthors!

Figure 1. Coauthor ship distribution per paper.

B. k-cores on unfiltered graph

We apply of the k-core algorithm on the graph considering
all the papers regardless of the number of authors (unfiltered).
In Figure 2. we can see the distribution of the sizes of the
k-cores in the unfiltered graph case.

Figure 2. Distribution of the k-core sizes in the unfiltered DBLP coauthorship
graph.

Here we will elaborate on the semantics of a k-core in the
co-authorship graph.As mentioned previously one paper with a
large number of coauthors can “push” authors with otherwise
low coauthor ship (or even practically none) to the densest
k-core. For example at k=113 we have 114 authors that all of
them have participated in the same publication and some of
them do not appear anywhere else on the dataset.

Following we present a ranking of a few selected authors
based on the maximum core they belong to (Table I.).

The results of the k-core application on the unfiltered graph
apparently are extremely biased, i.e. a 113-core in the graph
with all authors of a single paper, regardless of their other
publication activity.

http://dblp.uni-trier.de/xml/


Name of author k-core
Serge Abiteboul 28

Christos Faloutsos 28
Gerhard Weikum 22

Christos H. Papadimitriou 17
Paul Erdős 16

Table I
k-CORE RANKING UNFILTERED

This motivates us to consider filtering out papers with
extremely high number of coauthors. In this case the graph
is formed by the authors of the papers whose number of
co- authors is within the 99% of the distribution shown in
Figure 1. This leaves out papers with more than 15 coauthors
– i.e. less than 0.01% of the papers in DBLP bear more than
15 coauthors each. We call this version of the graph filtered
further on.

Figure 3. Distribution of the k-core sizes in the filtered DBLP coauthorship
graph.

We applied the k-core algorithm on the filtered graph –
considering papers with max 15 coauthors. The distribution of
the resulting k-core sizes appears in Figure 3. In the filtered
data the most dense core is at k=15, including size of 76
authors. These authors appear in TABLE II.

By excluding papers we, expectedly, get many of the authors
“move down” in cores of smaller k values. In TABLE III.
we can see the new rankings of the same authors. As we
can see the top authors get accumulated in the second most
cohesive core. This means that, even though these authors
are very collaborative, some of their coauthors had only a
few collaborations on papers with a large number attributed
authors. The most cohesive k-core (15) has authors that are
highly collaborative with other authors that behave in a similar
way. It is interesting that for some authors i.e. Tanenbaum the
vertex degree in the filtered case is much lower (12) that in
the unfiltered one (48) apparently due to his participation in
multi- author papers that were filtered out.

Kurt Mehlhorn Micha Sharir Pankaj K. Agarwal
Rolf Klein Mark H. Overmars Herbert Edelsbrunner
Stefanie Wuhrer Jack Snoeyink Joseph O’Rourke

Subhash Suri Otfried Cheong Hazel Everett
Sylvain Lazard Helmut Alt Emo Welzl

Günter Rote Leonidas J. Guibas Chee-Keng Yap
Danny Krizanc Pat Morin Jorge Urrutia

Diane L. Souvaine Ileana Streinu Dan Halperin
Hervé Brönnimann Joseph S. B. Mitchell David Eppstein
Erik D. Demaine Olivier Devillers Sándor P. Fekete

Henk Meijer Sariel Har-Peled John Hershberger
Alon Efrat Stefan Langerman Bernard Chazelle

Joachim Gudmundsson Giuseppe Liotta Sue Whitesides
Christian Knauer Raimund Seidel Michiel H. M. Smid

Tetsuo Asano David Rappaport Vera Sacristan
Hee-Kap Ahn Prosenjit Bose Michael A. Soss

Godfried T. Toussaint Marc J. van Kreveld Martin L. Demaine
Ferran Hurtado Timothy M. Chan Oswin Aichholzer

Bettina Speckmann Jeff Erickson Therese C. Biedl
Greg Aloupis David Bremner Anna Lubiw

Esther M. Arkin Boris Aronov Vida Dujmovic
Suneeta Ramaswami Thomas C. Shermer David R. Wood

Perouz Taslakian John Iacono Sergio Cabello
Sébastien Collette Belén Palop Mirela Damian

Jirı́ Matousek Otfried Schwarzkopf Richard Pollack
Mark de Berg

Table II
15-CORE AUTHOR LIST FILTERED

Name of author k-core
Serge Abiteboul 14

Christos Faloutsos 14
Gerhard Weikum 14

Christos H. Papadimitriou 14
Paul Erdős 14
Tanenbaum 12

Table III
k-CORE RANKING FILTERED

C. Fractional cores on the weights graph

Here we articulate the need for assigning weights to the
previously defined co-authorship graph. Assume two authors
x, y that have coauthored some papers, therefore they are
connected by an edge e. This co-authorship relation represents
a strong collaboration among the two. This collaborative effort
as it is evident is larger as the number of coauthored papers
increases. On the other hand the effort to author a paper
is naturally split among all papers coauthors (we assume in
equal parts). This justifies the definitions in previous sections
towards a weighted coauthor ship graph. Thus having defined
the fractional degree of a vertex the k-core algorithm can
easily be extended to compute degeneracies where k is a
rational number. The new algorithm differs only in selecting an
increment step for the rational limit and an extra computation
- in the loop- for calculating the sum of the weights at each
node.

In the case of indirect filtering that applies a low weight to
papers with high number of coauthor ship. In Figure 4, we
can see the distribution of the fractional k-cores sizes with
k. The behavior is again exponential (in terms of decrasing
k-core size with k). The maximum edge weight is 149.50 and
the core contains one pair of authors (Sudhakar M. Reddy,



Figure 4. Distribution of the fractional k-core sizes in the DBLP coauthor-
ship graph Up: full extent, Down: the less dense cores (k < 26) .

Irith Pomeranz) whose publication record indeed verifies the
claims as they have coauthored 373 papers, 256 of them as
sole 2 coathors! The next step where k-core size increases
is k = 77.79 including the additional authors: Henri Prade,
Didier Dubois whose strong collaboration is verified by the
number of coauthored papers (223 according to DBLP) as
well by the moderated number of coauthors in them.

In the upper part of Figure 4 we see the fully fledged
distribution where at the bottom part we present the same
distribution ignoring the extreme k values (k > 26) repre-
senting a very tiny part of nodes. and but the size of the cores
has an immediate drop. (On the upper part we can see the
full extent of the cores where in the lower one the weight
axis has been cut off for better understanding of the “early”
part of the behavior of the fractional cores). In this case the
results differ to the previous unweighted cases. This is due
to the weighting scheme. Indeed the assigned weight w(e) is
proportional to the number of papers they have coauthored
and inversely proportional to the number of coauthors per
coauthored paper. Thus w(e) represents the “amount’ of
collaboration among x, y in terms of effort committed for
common publications which is of course is normalized in each
case by the number of contributing coauthors. This implies

that the best fractional k core communities contain authors
that are intensively coauthoring with others but the number of
coauthors is not high and thus the share of collaborative effort
is high. Assuming an author x in Hdblp it should be stressed
that her best hop-1 coauthor ship k-core (i.e. immediate
coauthors) are those that have at least k coauthors as well. This
presents an interesting property that this structures evolves as
a metric of collaboration where the collaborators should also
be important with regards to this metric.

Name of author k-core
Christos H. Papadimitriou 20.8

Serge Abiteboul 20.5
Christos Faloutsos 18.7
Gerhard Weikum 16.3

Paul Erdős 13.9

Table IV
k-CORE RANKING FILTERED

In TABLE IV. are displayed the new rankings, of the
previous sample of authors, based on the fractional cores com-
putation. It is interesting that there is a different ranking in this
case due to the weighting scheme that favors not only plethora
of publications but also repetitive co-authorship with limited
number of coauthors. In this case intensive collaboration with
certain coauthors over a long series of publications increases
the mutual edge weights and thus the ranking in the factorial
k-cores.

In TABLE V we see the summary of the k-cores for the
seminal author P. Erdős for all the graph versions (unfiltered,
filtered, and factorial k-core). In the unfiltered case P. Erdős
Vertex Core number is 16 (i.e. belongs to a 16-core) with
12802 more authors and his hop-1 community contains 20
names (coauthors) that as well belong to tha same core (i.e.
apparently P. Erdős has more coauthors whose Vertex Core
number is less than 16 and therefore they do not survive until
this level . In the filtered case P. Erdős Vertex Core number is
14 with 1236 more authors and his hop-1 community contains
20 names (coauthors) that as well belong to the same core.
It is interesting that here the Vertex Core number is lower
in comparison to the unfiltered case due to the removal of
nodes that participate in papers with many other authors (>15).
With regards to the factorial core structure the Vertex fractional
degree is 13.9 with 2678 other coauthors. There is a large
overlap in the hop-1 communities in all cases.

In Table VI we see the relevant data for fractional cores for
a selection of well known and seminal authors representing
their degree of collaborations with their coauthors. C. H.
Papadimitriou has a top score in this measure (20.8) while
having a very small but cohesive community of coauthors,
with prominent example Yannakakis contributing an awesome
weight (19.62) on the vertex fractional degree of Papadim-
itriou. This implies that they have coauthored many papers
together (46) out of which more than 30 are coauthored by the
two of them only! On the other hand G. Weikum has a much
more distributed collaboration circle in terms of coauthors



max-k Core hop-1 - Authors in core
size

unfiltered 16 12802 Boris Aronov, Daniel J. Kleitman
János Pach, Leonard J. Schulman

Nathan Linial, Béla Bollobás
Miklós Ajtai, Endre Szemerédi
Joel Spencer, Fan R. K. Chung
Ronald L. Graham, David Avis

Noga Alon, László Lovász
Shlomo Moran, Richard Pollack
Michael E. Saks, Shmuel Zaks

Peter Winkler, Lászlo Babai
filtered 14 1236 Boris Aronov, Daniel J. Kleitman

János Pach, Leonard J. Schulman
Nathan Linial, Béla Bollobás

Miklós Ajtai, Endre Szemerédi
Joel Spencer, Fan R. K. Chung
Ronald L. Graham, David Avis

Noga Alon, László Lovász
Shlomo Moran, Richard Pollack
Michael E. Saks, Shmuel Zaks

Peter Winkler, Prasad Tetali
László Babai

factorial 13.9 2678 Boris Aronov, János Pach
k-core Leonard J. Schulman, Nathan Linial

Miklós Ajtai, János Komlós
Endre Szemerédi, Fan R. K. Chung

Ronald L. Graham, Noga Alon
László Lovász, Zoltán Füredi
Vojtech Rödl, Shlomo Moran

Andreas Blass, Richard Pollack
Michael E. Saks, Shmuel Zaks

Table V
THE K-CORES FOR P. ERDOS FOR ALL THE GRAPH VERSIONS

that almost uniformly (except the case of Scheck – 7.43)
contributing to his vertex fractional degree. Finally Tanenbaum
with a vertex fractional degree 13.0 has a rather small collabo-
ration community with main collaborators Maarten van Steen
(contributing a weight 4.68) and Robbert van Renesse (5.4)
while the rest is uniformly distributed to the others.

V. CONCLUSIONS

Large and evolving graphs constitute an important element
in current large scale information systems. Common cases
of such graphs are the Web graph, social networks, cita-
tion graphs, CDRs (call data records) where nodes (featured
with attributes - in some cases with a large cardinality) are
connected to each other with directed edges representing
a relation such as endorsement/recommendation/friendship.
Community detection and evaluation is an important task in
graph mining. A variety of measures have been proposed
to evaluate the quality of such communities. In this paper,
we evaluated communities based on the k-core concept, as
means of evaluating their collaborative nature - a property
not captured by the single node metrics or by the established
community evaluation metrics. Based on the k-core, which
essentially measures the robustness of a community under
degeneracy, we extended it to weighted graphs, devising a
novel concept of k-cores on weighted graphs. We applied the
k-core approach on large real world graphs – such as DBLP
and report interesting results. Our contributions are:

Author Core Size hop-1 list
C.H. 20.80 417 Michalis Yannakakis 19.62

Papadimirtiou Erik D. Demaine 0.14
Georg Gottlob 1.00

G.Weikum 16.30 1506 Hans-Jörg Schek 7.43
Surajit Chaudhuri 5.05

Raghu Ramakrishnan 0.41
Gustavo Alonso 0.43

Divyakant Agrawal 0.29
Yuri Breitbart 1.49

Amr El Abbadi 0.29
Catriel Beeri 0.33

Rakesh Agrawal 0.48
Abraham Silberschatz 0.17

Gautam Das 0.70
S. Sudarshan 0.20

Michael Backes 0.33
Jennifer Widom 0.19
David J. DeWitt 0.19

Stefano Ceri 0.275
Serge Abiteboul 0.33
Umeshwar Dayal 0.17
Michael J. Carey 0.14

Hector Garcia-Molina 0.14
Yannis E. Ioannidis 0.23

David Maier 0.16
Jeffrey F. Naughton 0.57

Timos K. Sellis 0.07
Richard T. Snodgrass 0.07

Jeffrey D. Ullman 0.07
Henry F. Korth 0.23
Beng Chin Ooi 0.08
Edward A. Fox 0.09

Divesh Srivastava 0.53
Krithi Ramamritham 0.15
Christos Faloutsos 0.13

Victor Vianu 0.13
DanSuciu 0.50

Tanenbaum 13.0 4016 Maarten van Steen 4.68
Frances M. T. Brazier 0.98

Howard Jay Siegel 0.13
M. Frans Kaashoek 7

Anne-Marie Kermarre 0.25
Robbert van Renesse 5.4

Michael S. Lew 0.02

Table VI
FRACTIONAL CORES AND HOP-1 LIST FOR SELECTED AUTHORS.

i. a novel metric for evaluating the cohesiveness of com-
munities based on the k-core structure

ii. an innovative extension of the k-core concept assigning
weights on the edges and

iii. an extended experimental evaluation in the case of the
DBLP co-authorship graph that results in very interesting
findings.

The findings from the DBLP co-authorship graph can
also be viewed visually at http://www.lix.polytechnheique.fr/
∼giatsidis/cores/.There with the help of graph presentation
libraries [2] and [1] the hop-1 list for any author inside the
DBLP as well as his/hers k-core and f-core rankings can be
seen through a user interface.

http://www.lix.polytechnheique.fr/~giatsidis/cores/
http://www.lix.polytechnheique.fr/~giatsidis/cores/
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